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A time-dependent quantum mechanical method for propagating the wave function on several electronic states
is discussed for the polyatomic case and illustrated by the quenching collision of a Na (3p 2P) atom by H2.
The specification of method is governed by the need to have a clear physical interpretation of the results, by
the recognition that the motion on a given electronic state can often (but not always) be well approximated
by classical mechanics, and by the need for a computational procedure that is simple enough to handle
polyatomic systems. These desiderata are realized by the spawning technique which is discussed in detail.
One more feature of the method is that it allows for a smooth interface with the methodologies of quantum
chemistry so that the electronic structure problem can be solved simultaneously with the time propagation of
the nuclear dynamics. The method is derived from a variational principle and so can yield quantum
mechanically numerically converged results. The parameters that govern the numerical accuracy of the method
are explicitly discussed with special reference to their physical significance. The quenching of a Na (3p 2P)
atom by H2 due to a conical intersection of two potential energy surfaces is used as a computational example
since it illustrates many of the features of the method. This collision is found to be sticky and exhibits many
sequential nonadiabatic couplings, each of which is localized in time, where the quenching probability per
traversal of the conical intersection region is small. However, the accumulated transfer of population to the
ground state can be significant since the duration of the overall transfer is spread over many vibrational
periods of H2.

I. Introduction

Collisions “of the second kind” involving the quenching of
electronically excited atoms have been studied since the
1920s.1-3 The seminal theoretical work of Landau and Zener4-6

provided the notion of a localized “crossing region” where the
probability of a nonadiabatic transition was high and thereby
explained the often surprisingly large quenching cross sections.
Stueckelberg7 has added the refinement that since the “crossing”
can occur either on the way in or on the way out, there will be
a typical quantal interference phenomena. Teller8-10 then made
the key observation that the “no crossing” rule can fail in
polyatomic systems and has analyzed the implications of passage
near such a conical intersection of two potential energy surfaces.
For atom-atom collisions, stationary quantum mechanical

scattering theory can be implemented (e.g., ref 11) and provides
a validation of the ideas of Landau, Zener, and Stueckelberg.
For polyatomic systems stationary quantum mechanical scat-
tering methods can be discussed (e.g., refs 12 and 13 for atom-
diatom collisions) but their computational implementation is by
far more demanding. It is indeed only fairly recently14 that the
first full 3D stationary scattering computation has been reported,
for the Na*+ H2 problem, the same system that we too use as
an illustration. The development and applications of pump-
probe experimental techniques has provided much impetus for
the development of time-dependent quantum mechanical meth-

ods.15 Such methods have proven suitable for treating the
motion on more than one electronic state, and several recent
versions have been proposed.16-20 The method that we discuss
below (see also refs 21 and 22) is fully quantum mechanical.
However, in many ways it is best regarded as a descendent of
classical methods. As a quantal method, it necessarily however
does have elements of methodology similar to other quantal
methods. For example, it uses a basis set but this basis is
constructed and coupled in a special way as discussed in sections
II and III.
Classical and semiclassical methods4-6,23-29 have a clear,

almost overwhelming, advantage in the number of degrees of
freedom that can be handled. Strictly classical approaches are
not permissible for nonadiabatic collisions because then the
nuclei need to move under a single potential which implies the
validity of the Born-Oppenheimer approximationsthe very
approximation whose breakdown is of interest. Perhaps the
simplest way to allow for nonadiabatic transitions in a classical
framework is the classical path approximation,27,30,31 which
allows the weights of the electronic states to change with time,
while requiring that the nuclear dynamics be represented with
a single trajectory. In this way, a single potential is operative,
but this potential is a time-dependent weighted average of
several electronic states. This scheme, while computationally
very tractable and sometimes realistic, e.g., for describing fine
structure transitions, has the limitation that in many problems
of interest the motion of the nuclei in the different electronic
states is qualitatively different, e.g., when a bound potential
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intersects a repulsive one. For these more common situations,
one needs in one way or another to go beyond strict classical
mechanics.
A classical method which has been often applied is the Tully

surface hopping procedure.24,32 The bare essence of that method
is that a classical trajectory is propagated on a given electronic
state, which means that the potential for the motion is well
defined, until the trajectory reaches a localized region of
effective nonadiabatic coupling. Then a decision is made
whether to “hop” to a new electronic state or not. If a hop
occurs, the trajectory is propagated on a new, again well-defined
but different, potentialsthe potential appropriate to the new
electronic state. The quantum mechanical methodology that we
use has a similar philosophy, while the details are necessarily
different. The variational nature of the methodology ensures
that it can be carried to the level of numerical convergence,
and this has been verified by comparison with numerical
integration on a grid of the time dependent Schro¨dinger equation
for one21,22 (and two33) dimensional problems, including the
three “standard” problems given by Tully.32

The method is not limited to such problems where the
coupling of different electronic states is due to the breakdown
of the Born-Oppenheimer separation. Applications have been
reported21,34-36 for the pump-probe technique where it is the
external laser field that induces the coupling and also for a
solvent-induced coupling between the bound and repulsive states
of the I2 molecule35,36 where in the isolated molecule the two
adiabatic states do not interact because of symmetry.
The principles guiding our procedure are discussed in section

II, and the actual equations of motion with other technical details
are given in section III. The method can be applied in either
the adiabatic or diabatic electronic basis, and this and other
aspects of the interface with quantum chemical computations
of electronic structure are also discussed in section III. In
section IV, we present computational results for electronic
quenching in the collision of Na* and H2.

II. Features of the Method

The essential ingredients in our method are as follows. We
take the accumulated experience of three decades to imply that
many essential dynamical features of the propagation of atoms
on realistic potentials are well captured by classical mechanics.
There are, of course, inherently quantal effects. The most
obvious of these are interference37-39 and tunneling. Addition-
ally, there are more subtle dynamical effects (e.g., above barrier
reflection) which are sometimes represented by adding a
“quantum potential” to the classical equations of motion.40

Notwithstanding the quantum features, classical mechanics does
take care of much of the role of the potential. Hence the first
operational conclusion: the computational procedure should
have to deal only with corrections to the classical description
and not with the classical description itself. In other words,
the classical motion on a given electronic state should be, as
much as possible, part of the zeroth-order description. For
motion on a given electronic state, this implies that the
“coupling” we need to deal with is due to corrections to the
classical description. Below we refer to these as the “intrastate”
coupling because such terms do not change the electronic state.
To obtain the true quantum mechanical converged wave

function, it is necessary to retain the intrastate coupling terms
which serve to correct the classical description of the motion
on a given electronic state. We do so in the computations below.
However, many quantal features average out when expectation
values are computed.39,41 Hence, for more averaged results it
is often not unreasonable to partly or completely neglect these
intrastate terms.

The other type of nonclassical terms in the equations of
motion are those that represent the nonadiabatic coupling
between different electronic states. These are the “interstate”
coupling terms. We assume that typically these will be
localized. The interstate couplings are handled by a procedure
we term “spawning”. This is our analogue of the “hopping” in
“trajectory hopping”, but the technical details are quite different.
Spawning allows the wave function to bifurcate, with one part
continuing on the initial electronic state while a second part
evolves on a different electronic state.
As in the method of trajectory hopping, we spawn only when

it is necessary, and the criterion for doing so is discussed below.
Spawning isnot instantaneous. The time evolution and the
extent (and phase) of spawning are determined by the time-
dependent Schro¨dinger equation. Because spawning is a
dynamically dictated bifurcation of the wave function, it is a
unitary time evolution. Probability, i.e., wave function nor-
malization, is therefore inherently conserved.
Our method draws on the connection between the quantum

mechanical time evolution of complex Gaussian functions and
classical trajectories. This correspondence has a rich history,
beginning with the recognition that the coherent states of a
harmonic oscillator follow the classical equations of motion,42,43

even when acted on by a force.44 Heller championed the use
of complex Gaussian functions as a numerical tool to study
quantum dynamics on a single electronic state.45 As sum-
marized nicely in a review by Herman,28 other workers have
built on this framework, in the context of both single46-64 and
multiple65-67 electronic state dynamics. Of all these methods,
the one most closely related to our own is that of Sawada and
Metiu67 for one-dimensional wave functions. We have dis-
cussed the numerous differences when our method was tested,21

of which perhaps the most prominent is our emphasis on
connections with classical mechanics. Apart from numerical
and interpretational advantages, these connections are what has
enabled us to provide an efficient interface with quantum
chemistry.34,68-70

The schematic outline of the method is as follows. A
preliminary stage is to run classical trajectories for each
electronic potential energy surface of interest. These are
ordinary classical trajectories, without any regard for the other
electronic states. The only sense in which the trajectories for
the different electronic states are related is the trivial one that
their total energy (electronic plus nuclear) needs to be about
the same. (Not even exactly the same because the localized
wave function is not an energy eigenstate.) In principle we
need to include enough trajectories to representatively sample
the energetically available phase space. In practice, far fewer
are really needed; more on this below. In any case, with current
computational capabilities this is readily manageable.
Each classical trajectory serves as a guide for the motion of

the center of a nonspreading wave packet. The simplest such
a packet is a frozen Gaussian.45,71 These traveling wave packets,
each of which carries, by construction, an electronic state label,
are our time-dependent nuclear basis set. These wave packets
are put aside in a store and not further used unless specifically
called for by the spawning routine. Because these wave packets
are waiting by the sidelines until they are called, it is not strictly
necessary to generate them beforehand (and in practice we do
not do so), but it helps to think of them in that way. (“They
also serVe who only stand and wait,” Milton, Sonnet XV, 1652,
except that our packets move and wait).
Next comes the quantum mechanical time propagation. In

the most common case, when the collision starts on a given
initial electronic state, initially only intrastate coupling is
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operative. The wave function is then simple. It only has nuclear
basis functions with a given electronic state label. Indeed,
provided the nuclear basis functions and the desired initial state
are of the same form, one nuclear basis function will often
suffice. However, a more accurate procedure begins with a
number of initial basis functions whose phase space centers are
drawn from the Wigner distribution corresponding to the initial
wave function.72 This approach ensures that the basis functions
which are required to do justice to the intrastate coupling are
present in the later stages of the propagation.
All through the time propagation, the magnitude of the

interstate, nonadiabatic coupling to the other states is monitored.
When the nonadiabatic interstate coupling to a different
electronic state exceeds a threshold value, we spawn new basis
functions on this new state. The details of this spawning are
discussed below, but the guiding principle is that the spawned
functions should have maximal overlap with the “parent” basis
function during the time when the coupling is maximal. In the
impulsive limit, when the wave function spends very little time
in the nonadiabatic coupling region, only a single spawned basis
function is required. On the other hand, if the wave function
lingers in the coupling region, it may be necessary to spawn
more than one additional basis function for the new electronic
state. The threshold value for designating coupling regions is
one of the parameters that determines the numerical accuracy
of the result. Strict convergence at the level of the wave
function can require quite low values. Convergence at the level
of observables, for example expectation values of position on
a particular electronic state, can tolerate a higher threshold value.
After the spawning, the wave function has components on

more than one electronic state. However, the computational
effort is determined by how many nuclear basis states contribute
to the wave function. At this point this number is still quite
low. Once there is a component of the wave function on a
new electronic state, it can spawn back into the initial electronic
state and/or into other electronic states, etc. In practice we find
that one can spawn very many times (as will be needed for
Na* + H2

73) before the implementation of the quantum time
evolution becomes an issue.
To conclude, spawning allows the wave function to keep only

those basis functions that have the greatest weight and therefore
make the most important contribution to the nuclear dynamics.
Because the nuclear basis states already, by construction, move
along classical trajectories, the quantal time evolution only needs
to handle the two nonclassical aspects, the interstate, nonadia-
batic coupling, which is our prime interest, and the intrastate
coupling, which corrects for the classical description on a given
electronic state and which we retain so as to have a fully exact
quantal method. In practice it should often be possible to take
liberties with the latter type of coupling.
The criterion for spawning is the magnitude of the effective

interstate coupling. In the diabatic representation, we define
this as the magnitude of the coupling divided by the electronic
energy gap evaluated at that point which is the center of the
nuclear parent basis state. If this magnitude exceeds a preas-
signed threshold value, we launch a new nuclear basis state on
the other electronic state. Two technical comments, concerning
the later stages of time propagation, are in order here. After a
while, when the two electronic states have been previously
effectively coupled and one arrives at a point where a new spawn
is called for, there may already be a nuclear basis state on the
other electronic state surface localized just about where a need
for a new basis state is indicated. In this case we do not spawn
a new state because it will be nearly linearly dependent with
an already existing state. Rather, we increase (or decrease) the

weight of the existing state in the wave function. The extent
and duration of this increment is determined by the equations
of motion as derived from the Schro¨dinger equation in section
III. The second point concerns the delocalization of the wave
function. After a few spawns, the nuclear wave function on a
given electronic state is a linear combination of a number of
localized basis states. It is therefore no longer localized. In
particular, (i) at similar times it can spawn new states onto a
different electronic state at quite different locations and (ii)
expectation values computed for such a wave function do not
necessarily have small dispersions, e.g., the mean value of a
coordinate is not necessarily a good indicator of the location of
the wave function centroid.

III. Formalism

This section provides a quantitative and detailed description
of the method for the general case of several nuclear degrees
of freedom. (The computational example of section IV is nine-
dimensional.) Technical aspects of a more specialized nature,
such as the choice of time step and the associated checks for
numerical convergence, are provided but are also discussed in
more detail elsewhere.33 We do however discuss why our
method remains practical also in the multidimensional case and
what steps are taken to make it as efficient as possible. Also
discussed is the nature of the possible interface to quantum
chemical codes which enables one to simultaneously determine
the electronic structure and the nuclear dynamics. Explicit
expressions are given for the gradients of the electronic wave
functions which the method uses as an input when the electronic
structure is determined “on the fly”. These gradients are
available as standard output in so-called quantum chemical
gradient routines.74-76 We present a multidimensional saddle-
point approximation (cf. ref 69 for the one-dimensional case),
which greatly facilitates the interface with electronic structure
problems. Finally, it is emphasized that, with suitable changes
in the nature of the couplings, the method is equally applicable
in both the adiabatic and diabatic representations.
(A) The Total Wave Function. The total time-dependent

wave function of the system is expanded as a weighted sum
over electronic states of normalized wave functions. Each
component in the sum is a product of an electronic and a (time
dependent) nuclear wave function

(Throughout this paper bold letters are used to denote vectors
and matrices.) The wave functions of the electronic states are
taken to be orthonormal over the electronic coordinates

and they are allowed to depend parametrically on the nuclear
coordinates,R. If the electronic states are adiabatic, then this
dependence is due to the usual electronic part of the total
Hamiltonian being parametrized by the positions of nuclei. For
a diabatic basis, the dependence onR will be much smoother77

or altogether absent. The dynamical equations of motion as
derived below assume that the matrix elements of thetotal
Hamiltonian in the electronic basis are a given input. Below
we shall discuss the question of generating this required input
simultaneously with propagation of the wave function. If the
electronic basis is adiabatic, then, by definition, it diagonalizes
the electronic part of the Hamiltonian and so the only off-
diagonal matrix elements of the total Hamiltonian in the
electronic basis are due to the nuclear kinetic energy operator.

Ψ ) ∑
I

CI(t)φI(r ;R) øI(R;t) (3.1)

∫dr φ*I′(r ;R) φI(r ;R) ) δI,I ′ (3.2)
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In contrast, the diabatic basis is chosen so that the latter is
(exactly or effectively) diagonal, and it is the electronic
Hamiltonian that has off-diagonal matrix elements.
The nuclear wave functions are normalized but need not be

orthogonal to one another. The (complex) amplitudesCI

determine the population,|CI|2, and the degree of coherence of
the different electronic states. To determine them, it is sufficient
that the electronic wave functions of the different states are
orthogonal. The initial conditions in the experiment specify
the values of these amplitudes at early times,t f -∞.
Typically, only one particular electronic state will be initially
populated so that

(B) The Nuclear Wave Functions. The time-dependent
nuclear wave function for theIth electronic state is represented
as a linear combination of (multidimensional) traveling basis
wave functions, with time-dependent weights:

where each time-dependent basis state is centered about a
classical trajectory which is determined by the potential of the
Ith electronic state. This potential will be a diabatic or an
adiabatic one according to which electronic basis set is being
employed. In an ideal world, each component in the sum (3.3)
would suffice to describe the quantum mechanical motion in
the absence of coupling between different electronic states. The
first approximation replaces this ideal by a practical approxima-
tion of a traveling Gaussian state, where this (multidimensional)
Gaussian is most simply constructed as a product of (one-
dimensional) Gaussian functions for each nuclear degree of
freedom. Of course, we will need to correct for the Gaussian
not being an exact solution for any but a harmonic potential,
and this will give rise to the intrastate coupling terms which
will be discussed below.
Explicitly, it is most convenient to use a Cartesian coordinate

system and write each term in eq 3.3 as a product of 3N (one-
dimensional) Gaussians:

Here,F, F )1, ...,3N enumerates theN atoms in the system
and their three Cartesian coordinates, and the time-dependent
parameters are determined so that each Gaussian state is centered
along a classical trajectory:

In eq 3.5MF is the mass of theFth atom (in order not to
make the notation too complicated, we use the indexF to denote

the mass of an atom although in principle it denotes a Cartesian
coordinate of a particular atom) and each Gaussian has a time-
independent width,RFj

I . In the special case of harmonic
potentials, the natural choice for this width is related to mass
and frequency.78,45 However, for general potentials, the choice
is not clear, and the width is best viewed as an arbitrary
parameter characterizing the basis set. In the cases we have
examined to date, the results (e.g., branching ratios) are rather
insensitive to the particular value chosen. Note that a single
nuclear phase,γj j

I(t), propagated using the Lagrangian, is
associated with each multidimensional Gaussian (cf. eq 3.4).
The nuclear phase will govern the Stueckelberg type interference
between different nonadiabatic transitions.
Equation 3.5 consists of a set of (6N + 1)n coupled first-

order ordinary linear differential equations, wheren is the
number of spawned basis functions. A single classical trajectory
on a given electronic state requires solving 6N + 1 such
equations (the extra 1 is due to the nuclear phaseγ). The
computational effort required to solve (3.5) isn times greater
than that required for a single classical trajectory. The additional
computational effort is due to the two main points of the
method: the dynamics occurs onI coupled electronic states and
the spawning which serves to keep the basis size as small as
possible. Other practical aspects of the propagation scheme are
discussed in subsection F below.
The coefficientsdI,j in eq 3.3 are time dependent, and their

equation of motion is discussed in subsection C. Their initial
values are determined by the initial state before the collision.
When we speak of “a single run”, we mean a computation where
only one particular nuclear basis state is initially populated. Note
that this need not be a typical initial state because it is not a
stationary state of the Hamiltonian for the noninteracting
partners. (It is a coherent-like state.) A stationary state needs
to be represented as a linear combination of several nuclear basis
states. A single run generates however a bona fide wave
function. One of our observations in the results section is that
single runs provide much more dynamical detail than stationary
initial states, where for the latter some detail is washed out by
the averaging inherent in representing the stationary state as a
linear combination of basis states. The experimental realization
of this observation is of course pump-probe time-domain
spectroscopy as practiced by Zewail and others.79,80

The use of Gaussian-shaped wave functions for individual
degrees of freedom has the clear advantage that it is easy to
center the wave function along a classical trajectory. However,
the Gaussian basis states are not orthogonal and tend to become,
with time, overly linearly dependent which requires care as is
discussed below. Also, in practice one wants to use as few
basis states as possible, which means that the intrastate coupling
terms should be as small as possible. Thus, other choices are
worth exploring.
(C) The Equations of Motion. The time dependence of the

total wave function requires solving for the time evolution of
the coefficientsDj

I ≡ CIdI,j, which are the quantal amplitudes
for being in the nuclear basis statej on the electronic stateI at
time t. The number of these coefficients is determined by how
many electronic states are included (i.e., by the range of the
indexI) and by how many nuclear basis states are required (i.e.,
by the range of the indexj) but is not directly influenced by
the number of nuclear degrees of freedom, i.e., the number of
atoms. Using a Gaussian basis set (or any other nonorthogonal
basis) for the nuclear wave function (Eqs 3.3 and 3.4) a set of
coupled equations of motion for the coefficients is obtained by
taking the scalar product of the time-dependent Schro¨dinger
equation for the total wave function on each nuclear basis state.

|CI|298
t f -∞

δI,I ′

øI(R;t) ) ∑
j

dI,j(t) øj
I(R;Rh j

I(t),Ph j
I(t),γj

I(t),Rj
I) (3.3)

øj
I(R;Rh j

I(t),Ph j
I(t),γj

I(t),Rj
I) )

exp(iγj
I(t))∏

F)1

3N

øFj
I (RF;RhFj

I (t),PhFj
I (t),RFj

I )

øFj
I (RF;RhFj

I (t),PhFj
I (t),RFj

I ) ≡
(2RFj

I /π)1/4 exp(-RFj
I (RF - RhFj

I )2 + iPhFj
I (RF - RhFj

I )) (3.4)

∂RhFj
I (t)/∂t ) PhFj

I (t)/MF

∂PhFj
I (t)/∂t ) (∂VI,I(R)/∂R)RhFj

I (t)

∂γjI(t)/∂t ) -VI,I(Rh jI(t)) + ∑
F

3N

((PhFj
I (t))2 - 2RFj

I )/2MF

(3.5)
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This prescription (“Dirac’s variation of constants”) is variational
in nature and will converge given enough basis states. However,
the time propagation is unitary regardless of the basis size and
so there is no obvious “flag” for failure to converge. This point
is further discussed in subsection F and in ref 33.
The resulting equation of motion is

The equation is written so as to distinguish the intra (I ) I′)
and inter (I * I′) state coupling terms. The matricesH andS
are defined by integration over the electronic coordinates only,
e.g.

The orthonormality eq 3.2, of the electronic states means that
Sacts as the identity matrix butH is an operator on the nuclear
coordinates. Equation 3.6 requires as input the matrix elements
of the H andS matrices over the nuclear basis states. First
note thatS is not diagonal in the nuclear indices because it is
the (time-dependent) overlap matrix of different Gaussians
which are not orthogonal to one another:

The intrastate (I ) I′) coupling in the equation of motion is
due both to the Hamiltonian matrix elements:

and to the time dependence of the overlap:

The interstate coupling (I * I′) is similar to (3.9) except that it
is defined by the elements of the Hamiltonian which are off-
diagonal in the electronic state index:

In the interstate coupling there is no overlap term becauseS is
diagonal in the electronic state index. Below, in subsection D,
we further discuss the coupling terms 3.9 and 3.11.
The equations of motion (3.6) are the “full multiple spawning”

method (FMS) which generates not only expectation values but
also a wave function that provides a reliable approximation, in
fact as close as desired, to the numerically exact quantum
dynamics. The only numerical problem is the need to avoid
excessive linear dependence of the Gaussian basis functions,60

and this can be handled using a regularization of the overlap
matrix via singular value decomposition.81 For problems of
one22 or two33 nuclear degrees of freedom, when exact quantal
propagation15 can be readily implemented, there is already a
savings in computational effort using FMS (in our experience
this is often around a factor of 5-10, depending on the details
of the problem). More importantly, the FMS remains a viable
method for larger systems, while numerically exact quantal
(grid-based) propagation15 is not feasible for more than six
dimensions given current computational facilities. We dem-
onstrate this advantage by examining a problem with nine
degrees of freedom in section IV. The FMS equations of motion

allow for quantal interference between nuclear wave packets
on the various electronic states. The importance of this will be
evident in the computational example below.
(D) Inter- and Intrastate Coupling. In the multidimensional

case, there are three points that need to be explicitly addressed
regarding the matrix elements of the total Hamiltonian which
are needed as an input for the equations of motion 3.6. First is
the question of the electronic basis set. The Born-Oppenheimer
basis set diagonalizes the Hamiltonian for (every) fixed position
of the nuclei. The resulting electronic wave functions will
depend on the nuclear coordinatesR, particularly so near a
conical intersection or an avoided crossing. The matrix elements
3.9 and 3.11 are then due to the nuclear kinetic energy operator

whereEI,I′(R) is the potential energy surface for theIth electronic
surface andT̂ is the usual nuclear kinetic energy operator, which
is particularly simple in the Cartesian system of coordinates
that we use. The non-Born-Oppenheimer terms, explicitly
given by

are the interstate terms that couple the different electronic states.
It is also possible to choose a diabatic basis which in practice

means that theR dependence is either weak or even nonexistent
so that the nuclear kinetic energy operator has no off-diagonal
matrix elements between electronic states. On the other hand
the electronic energy is not diagonal so that (3.12) is replaced
by

with EI,I′(R), I * I′ being the potential coupling between different
diabatic states.
While either the diabatic or adiabatic representation can be

used, an important consideration is that the effective interstate
coupling terms be localized. This will almost invariably favor
the Born-Oppenheimer, adiabatic basis. The reason for prefer-
ring a localized coupling region is that this brings one closer to
the impulsive coupling limit wherein fewer basis functions need
to be spawned on the other electronic state. Furthermore,
localized coupling makes a stronger case for evaluation of the
multidimensional integrations required in (3.12) or (3.14) using
saddle-point approximations as discussed below. When a
conical intersection is involved, however, the adiabatic interstate
coupling is singular and discontinuous at the intersection point.
To avoid the resulting numerical instability, we use the diabatic
representation in the example presented below.
The third point about the coupling is that it is often useful to

approximate the integration over the nuclear coordinates by a
saddle-point procedure. This is different than a Condon-like
approximation because the motivation is as much the localized

dDj
I

dt
)
d(CIdI,j)

dt
)

-i∑
k,l

(SI,I
-1)j,k{(HI,I - iS4 I,I)k,lDl

I + ∑
I*I′
(HI,I′)k,lDl

I′} (3.6)

ĤI,I′ ≡ ∫dr φ*I(r ;R) ĤφI′(r ;R) (3.7)

(SI,I)j,k≡ 〈øj
I|økI 〉 (3.8)

(HI,I)j,k≡ 〈øj
I|ĤI,I|økI 〉 (3.9)

(S4 I,I)j,k≡ 〈øj
I|∂økI /∂t〉 (3.10)

(HI,I′)j,k≡ 〈øj
I|ĤI,I′|økI′〉

(H I,I ′)j,k ) 〈øj
I|ĤI,I′|økI′〉 ) 〈øj

I|EI,I′(R)|økI′〉δI,I′ + 〈øj
I|T̂I,I′|økI′〉

T̂I,I′ ) T̂δI,I′ + 2AI,I′∇ + BI,I′ (3.12)

T̂) -∑
F)1

3N

(p2/MF)∇F
2

ÂI,I′ ) -∑
F)1

3N

(p2/MF)∫dr φ*I(r ;R)∇FφI′(r ;R)

B̂I,I′ ) -∑
F)1

3N

(p2/MF)∫dr φ*I(r ;R)∇F
2
φI′(r ;R) (3.13)

(H I,I′)j,k ) 〈øj
I|ĤI,I′|økI′〉

) 〈øj
I|EI,I′(R)|økI′〉 + 〈øj

I|T̂|økI′〉δI,I′ (3.14)
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nature of the coupling as the localized nature of the overlap.
The operational procedure is given by a first-order saddle-point
approximation to the matrix element of a function in position
space (f(R))

whereRh is the location of the centroid of the product of the
two basis functionsj and k. Second- and higher-order ap-
proximations69 are also possible, but they require derivatives
of the interstate coupling which may not always be available
(e.g., when quantum chemistry is used to generate the potential
energy surfaces and their couplings).
(E) Interface with Quantum Chemistry. The methods of

quantum chemistry determine electronic wave functions and
their eigenvalues by diagonalizing the Hamiltonian for a fixed
position of the nuclei. By repeating this procedure at different
configurations of the nuclei, one can map the entire potential
energy surface(s). In the multidimensional case, fitting an
analytical function to the numerical points is, at best, not easy.
It would be much better to use the raw output. But the raw
output is local inR. This would be fine for classical mechanics
because “analytical derivative” methods74-76 provide not only
the eigenvalues and eigenfunctions but also their gradients. The
classical equations of motion are essentially local in that all
that is needed are the forces (i.e., the gradients of the potential,
cf. (3.5)). But the quantum dynamics of the nuclei is not local.
The saddle-point approximation (eq 3.15) offers the simplest
resolution of this dilemma.
The approximation (3.15) means that one can solve the

electronic structure problem “on the fly”, that is, simultaneously
with the propagation of the nuclear dynamics. As one reaches
a new configuration of the nuclei, quantum chemistry is asked
to determine the gradients which are used (i) to propagate the
guiding trajectory to a new position, using eq 3.5, (ii) to evaluate
the intrastate coupling terms using eq 3.15, and (iii) to evaluate
the interstate, nonadiabatic terms (AI,I ′ andBI,I ′) in eqs 3.12-
3.13 and then use eq 3.15 for their nuclear matrix elements. In
our experience, the second-derivative term,BI,I ′ , is often much
smaller and, as a first approximation can be neglected. Now
one can take the next time step, and begin again. See also ref
69 on how to most efficiently take the time step.
The interface with quantum chemistry has, so far, only been

reported for the one-dimensional case (i.e., for diatomics or for
atom-atom collisions).34,68 Work is however in progress on
much more elaborate applications.70 We also note that although
the interface with quantum chemistry has so far used ab initio
methods, there is nothing to prevent the use of cruder semiem-
pirical methods. Indeed, when ab initio methods are used, the
solution of the electronic problem forms the bulk of the effort,
and it is thus natural to consider the possibility of using the
computationally more tractable semiempirical methods.
(F) Spawning. In the multidimensional case, the technique

of spawning is essential for keeping the basis size manageable.
First note that, necessarily, the equation of motion is solved by
propagating in finite time steps. On the other hand, in describing
a collision the initial wave function is, usually, confined to a
particular electronic state and possibly also to a particular nuclear
basis function. After some time steps, due to nonadiabatic
transitions (or possibly to an external laser pulse, see e.g., refs
22, 35, 36, and 82), the total wave function must develop a
presence on other electronic states. This is brought about by
the spawning procedure as follows. An effective nonadiabatic
coupling is defined by

wherev is the velocity vector. In the diabatic representation,
the nonadiabatic coupling depends only on the nuclear coordi-
nates, but in the adiabatic representation it depends on the
nuclear velocity. In both cases, this “effective coupling” is
introduced so that we will have a criteria for spawning which
depends only on the occupied basis function. This allows us
to avoid spawning attempts when they are not called for. A
necessary condition for spawning is that the effective coupling
reaches a threshold value (preassigned and determined by
numerical convergence requirements). If the other electronic
state is empty, then this is also a sufficient condition and a new
nuclear basis state, on the so far unoccupied electronic state, is
added to the total wave function. This new nuclear state is
localized at the same position as the nuclear state on the already
occupied electronic state. The new nuclear state is called from
the “store” as discussed in section II. An efficient way to build
such a store is to take advantage of the observation that the
time axis is, de facto, discrete. Therefore, take the initially
occupied nuclear basis state and propagate it on its own
electronic state. At each discrete point in time and for each
possible electronic state, specify a nuclear basis function which
is of maximal overlap with the present functional form of the
initially occupied nuclear basis state. These states are then
available if they are needed and at that discrete time point when
they are needed they will have a maximal overlap, by construc-
tion. If only one function is to be spawned per nonadiabatic
event, one should propagate through the coupling region and
choose the spawned function such that it is of maximal overlap
with the initially occupied nuclear basis function at the time
when the coupling is also maximal. This special way of
preparing a basis set of nuclear states takes advantage of the
detailed nature of the computation. It minimizes the number
of nuclear basis states that are actually needed to be present in
the full wave function at the price that the basis is “tailored” to
the particular run. For multidimensional problems the savings
in the occupied basis size is however an important consideration.
The full condition for spawning is the necessary condition

that the effective coupling warrants a spawn and the sufficient
condition that the other electronic state has no occupied nuclear
basis state of high overlap with the nuclear state on the initial
electronic state. After a while it is no longer obvious that the
sufficient condition is automatically satisfied. Rather, it too
needs to be checked. If it happens that there is an occupied
nuclear basis state of high overlap with the nuclear state on the
initial electronic state, then no spawning is allowed. Instead,
the already finite amplitude of that nuclear state is allowed to
change, and this is taken care of, automatically, by the equation
of motion (3.6). The technical reason for imposing the sufficient
condition is the near linear dependence of nuclear basis states
which are too close to one another. This overcompleteness of
the Gaussian basis speaks against spawning willy-nilly and is
consistent with our general philosophy22 that the nuclear basis
set should “tile” the available phase space.83-86

(G) Numerical Considerations. It is worthwhile to explicitly
state the numerical parameters which exist in the method. First
of all, there is the time-independent width of the nuclear basis
functions,RF

I . This parameter is in principle arbitrary, because
for any desired value, the set of all nuclear basis functions of

〈øj
I|f(R)|økI′〉 = 〈øj

I|økI′〉f(Rh ) (3.15)

HIJ
eff(R) ) {|〈φI(r ;R)|Ĥ|φJ(r ;R)〉EI,I(R) - EJ,J(R)

| diabatic

|∑
F 〈φI(r ;R)| ∂∂RF

|φJ(r ;R)〉vF| adiabatic}
(3.16)
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the form (3.4) is overcomplete. However, in practice basis set
convergence might be achieved much faster for some choices
than others. Although this issue deserves further consideration,
we have not found that the resulting dynamics is overly sensitive
to this parameter.
Second, there are the various thresholds which can be

systematically varied to approach convergence. The first of
these is the value of the effective coupling which triggers
spawning. Given localized interstate coupling, it is not difficult
to choose this threshold, and in general we find it easy to
demonstrate convergence with respect to its variation. The
recommended procedure is to run a few sample trajectories and
examine the time dependence of the “effective coupling”,
choosing a threshold value which does not miss any of the
resulting nonadiabatic events (indicated by “spikes” in the
effective coupling).
A third numerical parameter is the criterion for determining

if a basis function that is to be spawned is redundant with other
basis functions on the relevant electronic state. We use the
maximum overlap of the proposed function with all other basis
functions on the same electronic state as a measure of this
redundancy. If this value exceeds a threshold, the function is
declared redundant and the spawn is aborted. Because we do
not neglect the overlap of the nuclear basis functions in solving
(3.6), convergence is approached as this parameter is taken
closer to unity. Setting this to a value less than unity is simply
a numerical convenience which avoids the wasteful spawning
of functions which will in any case be removed when the overlap
matrix is inverted.
Finally, there is the number of spawned functions per “event.”

We have mentioned above the two limiting casessattempting
to spawn every time step and spawning exactly once while in
the coupling region. In general, the former limit is wasteful,
and the latter may not be sufficient. A systematic approach to
convergence is possible by introducing a third parameter which
is the number of spawn attempts,Ns, per traversal of the
coupling region. The time axis is divided intoNs intervals, and
the spawned function is designed to have maximal overlap with
its parent when the coupling is maximal in its designated time
interval. Convergence is achieved when the time intervals are
of comparable duration to the amount of time it takes the
spawned function and its parent to separate in phase space. If
the potentials for the coupled electronic states are very similar,
convergence is very rapid (only one spawn is required), while
it will be slower for coupled electronic states which are very
different, e.g., a repulsive state intersecting a bound state.
However, even in the latter case, we find that numerical
convergence is usually reached with 3-5 spawns/event.
(H) The MIS Equation of Motion. The MIS (multiple

independent spawning) approximation22 serves to bring the
formalism closer to the classical limit by neglecting such quantal
interference effects that would, in any case, be washed out upon
averaging over initial conditions. The technical approximation
is to neglect the intrastate coupling in the FMS equation of
motion (3.6) so that different nuclear basis functions on a given
electronic state evolve independently of one another. The
interstate coupling is kept the same. However, since much of
the complexity of eq 3.6 is due to the intrastate terms, the MIS
equation of motion

is much simpler. The input to this equation is as defined earlier
and the interstate multidimensional matrix elements are the same
as in the FMS method. We do not use this approximation

below, and it is recorded here for completeness. The primary
computational advantage of the MIS is that it avoids the matrix
inversion in (3.6). This is a consideration when the computa-
tional effort associated with the determination of potential energy
surfaces and their couplings is not dominant. On the other hand,
for first-principles nonadiabatic molecular dynamics, when the
solution of the electronic problem is most time-consuming, there
is no compelling computational advantage to MIS over FMS.

IV. Electronic Quenching in Na* + H2

We have chosen the electronic quenching process of Na (3p
2P) by H2 in order to demonstrate the multiple spawning method
for polyatomic molecules. This is one of the most well-studied
electronic quenching processes14,87-97 and is important as a
paradigm for electronic quenching. There is a conical intersec-
tion connecting the ground and first excited electronic states,
corresponding to Na(3p 2P) + H2 and Na(3s 2S) + H2. The
crossing of the two states is allowed in aC2V symmetry (when
the Na-H2 Jacobi angleγ equalsπ/2) but is otherwise avoided.
The ground-state potential energy surface is purely repulsive,
while the first excited state is bound (with respect to excited-
state Na atoms). Similar topologies of intersecting potential
energy surfaces have been implicated in other internal conver-
sion processes, for example, the Woodward-Hoffmann pho-
tochemically allowed ring openings.98-101 In this work, we have
examined the molecular scattering problem where Na* collides
with H2 with thermal energies. We focus on the quenching in
this paper, but note that a related issue87,93 is the “orbital
following” which can be thought of as a nonadiabatic transition
between the three excited states corresponding to the Na(3p 2P)
+ H2 exciplex, which are degenerate at infinite separation. This
issue is explored in depth in a forthcoming paper, and here we
wish to state only that the computations we describe did include
all three excited states in addition to the ground state. We have
used Cartesian coordinates to describe the dynamics, resulting
in nine degrees of freedom for this problem. This means that
we do not use any conserved quantities (e.g., the center of mass
momentum) to reduce the dimensionality of the problem. The
advantage is that the equations of motion are simpler and, in
our experience this is an overwhelming consideration.
(A) Potential Energy Surfaces. The potential energy

surfaces of Na-H2 are best understood from the viewpoint of
molecular orbital theory. We use the heuristic rule that the
strength of bonding and antibonding interactions are in first order
proportional to the square of the overlap between any two
orbitals. Additionally, we will consider only the role of the
three valence electrons. The H2 molecule may be considered
as having a doubly occupiedσ orbital and an unoccupiedσ*
orbital. Interaction with thes orbital of Na will be purely
repulsive because thesorbital overlaps with the doubly occupied
σ orbital of H2, leading to a strong Pauli repulsion. Because
the overlap of the Nas and H2 σ* orbitals is maximal for the
collinear approach, one expects that this will lead to a maximal
delocalization of the Na electron and partially mitigate the
repulsion just cited. Similar arguments lead one to expect
repulsive interactions between the H2 molecule and Na*, with
one exceptionsif the 3p orbital of Na is parallel to the H2
molecular axis, there is no longer any overlap with the H2 σ
orbital and there is maximal delocalization of the Na electron.
The interaction between the valence electrons is thus attractive,
and a potential well could be expected. In fact, the above
arguments are borne out by ab initio calculations.88,94 Please
note that the delocalization arguments should not be taken to
imply that the Na*-H2 exciplex is ionic in the usual sense of
the word. The amount of charge transfer from Na* to H2 is

dDj
I/dt ) -i[(H I,I - iS4 I,I)j,jDj

I] - i ∑
I′*I

∑
k

(H I,I′)j,kDk
I′ (3.17)
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very small; nevertheless, this delocalization will lower the kinetic
energy of the Na* electron and stabilize the exciplex. We have
used these arguments to develop an empirical functional form
describing the potential energy surfaces needed, which was
parametrized with reference to prior ab initio calculations.88,94

The final result is also similar to other model surfaces which
have been developed for this system, for example, the DIM
model of Truhlar and co-workers.102

A semiquantitative realization of the above considerations
builds on the angular overlap model.103 The radial dependence
of the intermolecular potentials is parametrized with Morse and
exponentially repulsive functional forms, and the angular
dependence is imparted by the overlap integrals between the
relevant orbitals. We write the potential in the molecular frame,
where the relevant variables are (see Figure 1) the Na-H2

(center-of-mass) and H-H distances, and the Na-H2 bending
anglesR, r, andγ, respectively. The general potential is given
as

where the overlap integrals,SR-â
2 ) |〈a|b〉|2, refer to the

angular factors only. The functionsM andX represent Morse
and exponentially repulsive functional forms, respectively:

The well depths of the Morse potentials in the excited state,
M′H-H (r,R), are allowed to have a geometry dependence to
account for the fact that the H-H bond should be slightly
weakened by the delocalization of the Na3p electron. The
parameters used in the Morse and exponentially repulsive forms
are given in Table 1. For the purpose of evaluating the angular
overlap, theσ andσ* orbitals of H2 are treated as functions of
s andp symmetry, i.e., we ignore the ellipsoidal shape of the
orbitals. Defining the H-H bond as thezaxis and the Na-H2

plane as thex-z plane, the angular overlaps are given by

where we have taken some liberties to improve the fit and
overlaps not defined in eq 4.5 are identically zero.
Unfortunately, there is little quantitative information about

the interstate coupling. Hence, we have simply used a functional
form which is consistent with the symmetry-imposed require-
ment that the coupling vanish inC2V andC∞V nuclear configura-
tions. We furthermore require that the coupling be continuous
and that it vanishes at large Na-H2 and H-H separations. The
final form is

The parameters used are given in Table 1. Note that the
Na(3py)-H2 state is rigorously uncoupled for all nuclear
configurations by symmetry (see Figure 2). The Na(3px)-H2

and Na(3pz)-H2 states are also coupled to one another, and for
lack of other information we use the same form and parameters,
except thatλ is scaled by 0.3.

Figure 1. Two lowest diabatic potential energy surfaces, for aC2V
configuration, as a function of the Na to H2 center of mass distance
(R) and the H-H distance (r) in bohr; see inset. In both panels the
contour lines are equally spaced between 1.75 and 3 eV. Lower panel:
the repulsive ground state (2A1) potential where the Na valence electron
is in the3sorbital. The zero of energy is taken with the Na atom and
H2 molecule at infinite separation, and the H-H distance at its
equilibrium value. Upper panel: the lowest excited state (2B2) potential
where the Na valence electron is in the3p orbital oriented parallel to
the H2 molecular axis. InC2V symmetry the ground and lowest excited
states cross, and the location of this crossing (“seam”) is indicated by
the dashed line. Because the electronic states are of different symmetry,
they are uncoupled and this crossing persists in the adiabatic representa-
tion. The crossing seam is off the approach coordinate and accessing
it requires a stretching of the H2 bond. However, it is energetically
accessible at the thermal collision energies used in the computations
because at its lowest point (r ∼ 2.17 bohr,R∼ 4 bohr) the seam lies
somewhat below the electronic excitation energy (∼2.1 eV) of the Na
atom.

V3s(R,r,γ) ) MH-H(r) + Sσ-s
2 Xσ-s(R) +

∑
j)1,2

XNa-Hj
(|RNa - RHj

|) (4.1)

TABLE 1: Parameters in Morse and Exponentially
Repulsive Potentials and the Interstate Coupling
(Eqs 4.1-4.6)a

De â re

MH-H(r) 0.1744 1.0276 1.40
M′H-H(R,r) 0.1569+ 0.01744 tanh[1.49(R- 5)] 1.0276 1.40
MNa-H2(R,r) 0.05822+ 0.0424 tanh[1.429(r - 2.2)] 0.5500 3.92

R R0

Xσ-s(R) 2.9 3.4
XNa-Hi(|RBNa - RBHi|) 4.0 2.5
Xσ-Na(core)(R) 2.5 3.5
Xσ-p(R) 0.3 3.0

Interstate Coupling
λ ) 0.4 Rr ) 0.5 RR ) 0.25

aAtomic units are used throughout.

V3pi(R,r,γ) ) M′H-H(r,R) + Xσ-Na(core)(R) +

∑
j)1,2

XNa-Hj
(|RNa - RHj

|) + Sσ*-pi
2 MNa-H2

(R) +

Sσ-pi
2 Xσ-p(R) + 2.1eV i) x, y, z (4.2)

Mi(r) ) De
i (1- exp(-âi(r - re

i )))2 (4.3)

Xi(R) ) exp(-Ri(R- R0
i )) (4.4)

〈σ|s〉 ) 1 〈σ|px〉 ) sinγ 〈σ|py〉 ) 0.6 sinγ

〈σ|pz〉 ) 1- cos2γ (4.5)

Vs-pi(r,R,γ) ) λ sin(2γ) exp(-Rrr) exp(-RRR)

i ) x, z
(4.6)
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The resulting diabatic surfaces corresponding to the ground
and lowest excited states, for nuclear geometries inC2V
symmetry are shown in Figure 1. The seam along which the
two surfaces are degenerate is indicated by a dashed line. This
degeneracy persists in the adiabatic representation because the
two states belong to different irreducible representations inC2V
symmetry. Note the presence of a well in the excited state. In
Figure 2, we show the angular variation of the diabatic potentials
for H-H and Na-H2 distances chosen to lie on the crossing
seam. The state corresponding to Na(3py)-H2 is denoted with
a dashed line to emphasize that it is uncoupled from the other
three states. The Na(3pz)-H2 and Na(3px)-H2 states cross at
geometries which are of neitherC2V norC∞V symmetry. Hence,
the adiabatic potentials corresponding to these states are not
required to cross.
(B) Dynamics. The dynamics of Na*+ H2 were studied

using the FMS method and the four potential energy surfaces
described in the previous section. In all of the computations
the collision is initiated with the Na* atom far from the H2
molecule and at a relative (thermal) kinetic energy of 0.039
eV. The initial internal state of the H2 molecule is a coherent
vibrational state and a pendular rotational state, whereas the3p
orbital is directed along a given axis in space that corresponds
to excitation by linearly polarized laser at the Na D line. This
orbital is then reexpressed in the molecule-fixed frame as a linear
combination of the three space-fixed3porbitals, and the initial
wave function is propagated in time using the split operator
procedure.34,69 A nine-dimensional Cartesian coordinate system
was used in the computations, and we monitored the amplitudes
(magnitude and phase) of the four electronic states as well as
other observables we deemed important for understanding the
dynamics. As reported below, we have studied a wide range

of impact parameters and also examined the effect of rotational
excitation of the H2 molecule. The results presented below
distinguish between single runs, i.e., a coherent initial state
represented as a minimum uncertainty state, that enable us to
study the mechanistic details of the dynamics, and results that
are (incoherently) averaged over experimentally relevant initial
conditions, such as the initial orientation. (This distinction is
often invoked in quasi-classical computations.104)
Unlike atom-atom collisions where the population transfer

is often due to one or two nonadiabatic events, we find that in
the Na*+ H2 system the quenching process is not direct and it
involves many repeated transfers each of which is localized in
time, as seen in the lower panel of Figure 3, where we plot the
ground-state population as a function of time (in femtoseconds)
for a single run (i.e., an initial coherent state) at an impact
parameter of 6 bohr. In a typical run, the duration of the
population transfer is very long (compared to the vibrational
period of the H2molecule), and the collisions are rather “sticky”.
During this period the nonadiabatic coupling between the excited
and the ground state is not monotonic in time but is switched
on and off many times during the collision. As a measure of

Figure 2. Bending (γ) angle dependence of the four diabatic potential
energy surfaces forR) 4 bohr andr ) 2.17 bohr. Energies are in eV,
and the H2 internuclear axis is defined as thez axis. Note that the
labeling of the states varies with the bending angle, i.e., with the
symmetry which isC2V whenγ ) π/2 andC∞V whenγ ) 0. To the
right and left of the diagram we schematically represent the electronic
states for Na+ H2 in C2V andC∞V symmetries. (The sphere labeled s
represents a spherically symmetric3s orbital, whereas the∞ symbol
designates a3p orbital aligned along thex, y, or z axes. Note also that
these potentials are defined in the molecular frame, so the axes are
fixed in this frame and they rotate in the lab frame.) InC2V symmetry
the ground (2A1) and exited (2B2) state cross, whereas the other two3p
states are degenerate inC∞V symmetry. The symmetry labels imply that
the 3py state (dashed line) is decoupled from the system whereas the
ground3sstate is coupled to both the3pz and3px states which are also
directly coupled to each other.

Figure 3. Typical collision at an impact parameter of 6 bohr and a
relative kinetic energy of 0.039 eV. The initial internal state of the H2

molecule is a coherent vibrational state and a pendular rotational state,
and the zero of time is defined for the well-separated reactants. Lower
panel: the ground-state population as a function of time in fs. Middle
panel: the effective coupling between the ground and lowest excited
state, defined (see eq 3.16) as the absolute value of the nonadiabatic
coupling divided by the electronic energy gap, computed at the nuclear
coordinates of the basis function representing the initial state. Upper
panel: the expectation value of the H-H distance,r (thin line and left
axis) and of the bending angle,γ, (heavy line and right axis) on the
initially populated excited state. The dashed line indicates whereγ )
π/2 and the nonadiabatic coupling vanishes. Note the steplike increase
in the ground-state population and the correlation between nonzero
values of the effective coupling and changes in the ground-state
population. As is evident from the middle and upper panels, the
magnitude of the effective coupling is determined by both the bending
angle and the H2 internuclear distance, on longer and shorter time scales,
respectively. Large effective coupling, and thus a large change in the
population, requires a departure fromC2V symmetry, an extended H2
bond length, and proximity of the three atoms (not shown). The fast
modulation of the effective coupling at early times (and to a lesser
extent at later times) is due to the molecular vibration.
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the magnitude of the nonadiabatic coupling (which has been
first discussed by Teller8,9), we plot in the middle panel of Figure
3 the absolute value of the nonadiabatic coupling divided by
the electronic energy gap (eq 3.16), computed at the nuclear
coordinates of the basis functions representing the initial state.
The magnitude of the effective coupling is modulated by two
motions which have very different time scales. The slow
bending motion of the angleγ (upper panel and right axis of
Figure 3) determines the magnitude of the interstate coupling
(cf. eq 4.6), while the fast H2 vibrational motion (upper panel
and left axis of Figure 3) determines the electronic energy gap
(cf. Figure 1). The sequential steplike increase in the ground
population transfer is due to the repeated passage through aC2V
configuration (indicated by the dashed line in the upper panel
of Figure 3), which is made possible by the sticky nature of the
collision. Large effective coupling is clearly correlated with
big changes in the ground-state population, and it requires a
departure fromC2V symmetry as well as an extended H2 bond
length and proximity of the three atoms. The latter determines
the duration of the collision which governs the overall period
of population transfer.
Clearly the snarled quenching process shown in Figure 3

cannot be described as a single nonadiabatic event per collision
and is thus very different from what is typically assumed in
atom-atom collisions. The dynamics that we observe are of
course due to the topography of the excited potential energy
surface from which the quenching can occur directly. It has a
shallow well along the atom-molecule approach coordinate
(which is responsible for the sticky nature of the collisions) while
the conical intersection is off this path and accessing it requires
a large excursion in the H-H distance. Such a surface is
reminiscent of many excited-state potential energy surfaces that
have been proposed for other quenching processes,10,98,105,106

and we therefore deem the random walk-like dynamics that we
observe to be of general interest. It is also very interesting to
note that in his 1937 paper,8 Teller suggested that such multiple
traversals of a conical intersection may be possible (and result
in efficient quenching even if the transition probability per event
is relatively small) “if the potential surface is such that the
molecular configuration will keep returning into the neighbor-
hood of the apex of the cone”.
The multiple traversals of the conical intersection and the

subsequent multiple nature of the population transfer result in
a wave function that is delocalized on both the ground and the
(initially populated) excited state. This delocalization evolves
gradually during the quenching process as more basis functions
are spawned on the ground electronic state and later also “back-
spawned” from the ground state to the excited state. The
buildup of delocalization in the wave functions is demonstrated
in Figure 4, where we plot the reduced incoherent density as a
function of the two distancesR and r, at three points in time.
(The zero of time is defined for the well-separated reactants,
and the vertical scale is not the same in all panels because of
the very different populations at different points in time and on
different electronic states, so the population cannot be inferred
from these plots.) The initial excited-state wave function (top
left panel) is a coherent (i.e., minimum uncertainty) state with
positive momentum along the atom molecule reaction coordi-
nate. It is localized at a large Na-H2 distance (∼30 bohr) and
around the H2 equilibrium distance (∼1.4 bohr). In the upper
right panel we show the ground-state population at the middle
of the collision when about half of the total quenching took
place. At this point the ground state is already somewhat
delocalized (in both coordinates), and because at this point in
time the excited state wave function is still localized, we do

not show it. At the end of the collision process, two lower
panels in Figure 4, both the excited (bottom left panel) and the
ground (bottom right panel) state components of the wave
function are highly delocalized and are moving out toward larger
Na-H2 internuclear distances. Due to vibrational excitation (see
below) on the ground electronic state, the ground-state com-
ponent of the wave function is delocalized in both coordinates,
yet the delocalization is of course more pronounced in the
unboundR coordinate. (Recall that the ground-state Na-H2

potential is purely repulsive.) Due to “back-spawning” the
excited state (lower left panel) component of the wave function
exits the collision in a bullet-like fashion, and the different
components are localized at very different Na-H2 internuclear
distances: very small fractions of the excited-state wave function
are still trapped in the excited-state shallow well, others are
already at largeR distances (between 25 and 50 bohr) and the
main component of the excited-state wave function is at a
distance of about 15 bohr. (Note that there is much less
delocalization in the H-H distance on the excited electronic
state because, unlike the ground-state component of the wave
function, the excited-state component is not vibrationally
excited.) This extended delocalization also implies that expec-
tation values, of the position for example, cannot always be
used to interpret the results as they do not necessarily represent
the location of the wave function, because the dispersion can
be high (as is seen, for〈R〉 and to a lesser extent for〈r〉, in
Figure 4). Before proceeding to discuss averaged results (that
correspond to an initial stationary state), we would like to stress
that Figure 4 nicely demonstrates one of the most important
and unique features of the spawning procedure (and more
generally of our ansatz for the wave function, eq 3.1), namely
the ability to describe very different dynamics on different
electronic states and even within a given electronic state. Such
qualitatively different dynamics (partially bound vs repulsive)
on different electronic states cannot be described using mean
field methods.
When studying the details of the dynamics, it is very

instructive to analyze single runs. However, such (single) runs
do not represent a typical initial state because a single run is
not a stationary state of the Hamiltonian for the nonreacting
species. A stationary state needs to be represented as a linear
combination of several nuclear basis states. In the rest of this
section we consider stationary states by averaging the results
over the initial atom-molecule orientation (i.e., the polar and
azimuthal angles). As expected, this averaging, inherent in
representing a stationary state as a linear combination of basis
states, washes out some of the dynamical details. (The steplike
population transfer, for example, becomes smooth and continu-
ous, yet it still extends over an extremely long time.) However,
it does enable us to report such results as the quenching
probability as a function of the initial impact parameter (Figure
5) which can be used to estimate the quenching cross section.
According to Figure 5 quenching is still possible at a rather
large impact parameter of about 10 bohr. This large value is
not surprising if we consider the topography of the attractive
excited electronic state and to the location of the seam.
Although it is known that ionic states are not involved in this
reaction (i.e., quenching does not proceed via a harpoon
mechanism107), we do expect the quenching cross section to be
relatively large. This is because the conical intersection is
accessible at thermal energies and also because of the attractive
nature of the excited-state potential. (Note, however, that the
conical intersection is located on the repulsive branch of the
excited-state potential.) A further consideration is that our
computations predict that tunneling has a nonnegligible con-
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tribution to the quenching probability. Since our potentials are
qualitative and furthermore the magnitude of the nonadiabatic
coupling is not known, we do not attempt to compare our results
to the experimentally measured cross section but our computed
estimate is of the order of about 20-25 Å2, which is within the
range of the experimentally measured one.108 The more
interesting question is of course the nonmonotonic dependence
of the quenching probability on the initial impact parameter,
and in particular its maximum. From careful inspection of
individual runs, at each impact parameter, it seems that the only
reasonable explanation for this maximum is that as the impact
parameter is increased, the velocity (along the approach
coordinate) in and about the nonadiabatic region decreases (on
the average), because the relative kinetic energy is the same
and the centrifugal barrier increases, and hence the quenching
probability increases. Although the impact parameter may
increase the quenching probability, by lowering the velocity in
the nonadiabatic region, when it is large enough it blocks the
access to the effective coupling region (due to the repulsive

centrifugal term). Hence, there is a maximum in the quenching
probability. Since the collision complex is long lived (on the
time scale of the H2 vibrational motion), and quenching occurs
via many nonadiabatic events, this explanation is of course very
qualitative and it cannot account for the magnitude of the
maximum. Our results indicate that both the number of
nonadiabatic events and the transfer probability per event are
important in determining the final quenching probability in a
collision.
Since many of the experiments on Na+ H2 were performed

at elevated temperatures, we have also studied the effect of initial
rotational excitation of the H2 molecule on the quenching
efficiency. In Figure 6 we compare the quenching probability
(at an impact parameter of 1 bohr) for H2 at V ) 0, j ) 0 and
V ) 0, j ) 3. Although the duration of the population transfer
is similar in both cases, the initial rotational excitation increases
the quenching probability from 18% to 56%. We attribute this
dramatic effect to efficient coupling between the rotation of the
molecule and the bending motion that enables a more frequent

Figure 4. Four profiles of the probability density before, during and after the Na*+ H2 collision plotted vs the relative distanceR and the H-H
distancer. (The impact parameter in this collision is 4 bohr and note that theR scale in not the same in all panels.) The vertical (z) scale is not the
same in all panels because whereas initially all the population is in the excited electronic state, after the collision 10% is left in the initial electronic
state, 50% is in the ground electronic state, and 40% is in the other two3p states. (Hence, the population cannot be evaluated from these plots,
which demonstrate only the spatial delocalization of the wave function.) Upper left panel: before the collision (t ) 0) the initial wave function is
localized at a large Na-H2 distance and aroundreq. Upper right panel: the ground-state component of the wave function during the collision at a
point in time (t ) 650 fs) when about half of the total quenching already took place. Note that the ground state is already somewhat delocalized
in R and that the H2 molecule is formed vibrationally excited. At this time the excited-state wave function is still localized and therefore is not
shown. Lower left panel: the excited-state component of the wave function after the quenching has essentially ceased (t ) 1200 fs) and it is
moving out. Note the wide range inR and the bullet-like fashion with which the excited-state component of the wave function exits. At the same
point in time this spreading is even more pronounced for the ground-state component of the wave function (lower right panel).
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and rapid sampling of the somewhat narrow nonadiabatic region
about the configuration ofC2V symmetry. Naturally, we do
expect that if the H2 molecule is excited to higher rotational
states (j ∼ 8), the quenching probability will be lower than for
rotationally cold H2 molecules, both due to the filling of the
attractive well by the repulsive centrifugal potential and due to
the fast rotational motion of H2, whose period scales as 1/j.
Next we proceed to analyze the final states. As one can

expect from the discussion of the effective coupling (which
requires an extended H2 bond length), the H2 molecule on the
ground electronic state is formed with much rotational and
vibrational excitation. This is demonstrated by examining the
Na-H2 translational motion. In Figure 7 we plot the (incoher-
ent) expectation value of the Na-H2 distance as a function of

time (for clarity only a slice of the collision is shown) on both
the ground (full line) and the excited (dashed line) electronic
states. (The results are averaged over 40 runs at an impact
parameter of 1 bohr.) The very similar slopes imply that
effectively all the electronic energy (nearly 2.1 eV) is transferred
into internal excitation of the H2 molecule. (Note also that, as
expected, and guaranteed by the spawning procedure, at early
times the newly populated ground electronic state overlaps the
parent excited state.) One can further analyze the internal
excitation in terms of vibrational and rotational energies. We
find that (for all impact parameters) the ground-state vibrational
distribution peaks atV ) 4, which is higher than the experi-
mental value,V ) 3. Even so, this agreement is quite good
given the qualitative potential energy surface that we have used
(and our further lack of knowledge concerning the details of
the nonadiabatic coupling).
The final ground-state rotational distribution is shown in

Figure 8 for H2 that is initially atj ) 0 (black bars) and atj )
3 (gray bars). This rotational distribution is calculated by using
an incoherent sum over many single runs, in the spirit of

Figure 5. Quenching probability as a function of impact parameter
(in bohr) for H2 that is initially atV ) 0, j ) 0 and a relative kinetic
energy of 0.039 eV. (At each impact parameter the results are averaged
over 40 runs.) Although quenching does not proceed via a harpoon
mechanism, there is a nonzero quenching probability at large impact
parameters because of the excited-state potential well and because the
seam is energetically accessible at thermal energies; see Figure 1. As
discussed in the text, we attribute the maximum in the quenching
probability to an interplay between two effects. As the impact parameter
is increased, the velocity (along the approach coordinate) in and about
the nonadiabatic region is decreased (on the average), because the
relative kinetic energy is the same and the centrifugal barrier increases,
and therefore the quenching probability increases, yet when the impact
parameter is large enough it blocks the access to the effective coupling
region (due to the repulsive centrifugal term) and hence the maximum
in the quenching probability.

Figure 6. Ground-state probability as a function of time (in fs) for H2

that is initially atV ) 0, j ) 0 andV ) 0, j ) 3, and an impact parameter
of 1 bohr. As in Figure 5 the relative kinetic energy is 0.039 eV and
the results are averaged over 40 runs. The quenching probability
increases from about 18% to 56% due to the initial rotational excitation,
and we ascribe this to efficient coupling between the rotation of the
molecule and the bending of the exciplex that allows a more rapid and
frequent sampling of the somewhat narrow nonadiabatic region about
a C2V symmetry.

Figure 7. Expectation values of the Na-H2 distance (in bohr) as a
function of time (in fs) on the initially populated excited electronic
state (dashed line) and the ground electronic state (full line). For clarity
we show only a time slice of the collision. The averaged results are
for an impact parameter of 1 bohr and all other parameters are as in
Figure 5. The very similar slopes imply that as is to be expected from
the topography of the potential energy surface and the position of the
seam that is at an extended H2 internuclear distance, effectively all the
electronic energy (about 2.1 eV) is converted into internal excitation
of the ground-state H2 molecule. Note that initially the incipient ground
electronic state overlaps the parent excited state.

Figure 8. Final rotational distribution on the ground electronic state
for H2 that is initially atj ) 0 (black bars) and atj ) 3 (gray bars). All
other parameters are as in Figure 6. For the initially rotationally cold
H2 molecules the final ground electronic state rotational distribution is
hotter than that of the parent state (the most probablej is 2), whereas
there is less excess rotational excitation on the ground electronic state
(over and above that of the parent excited electronic state) when the
initial j equals 3.
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quasiclassical techniques. We reiterate here that each single
run represents an approximate solution to the Schro¨dinger
equation for a particular coherent initial state, and in principle
we could sum the results coherently to recover the solution to
the Schro¨dinger equation for a given stationary initial state.
Computationally, it is easier to sum incoherently, but this implies
that some information is lost irretrievably. One consequence
of this is that rigorous selection rules need no longer be obeyed.
For example, the angular dependence of the coupling (which
the reader will recall was essentially dictated by symmetry and
continuity requirements), implies a selection rule of∆j ) 0,
(2 for Na + H2. Yet this should not be expected from our
results (and is not seen) because the final state we analyze is
no longer a pure state. When these issues are important, or
higher accuracy is desired, a coherent summation of the single
runs be used should instead.
For the initially cold H2 molecules we find that the ground-

state distribution is hotter than the parent state (the most probable
j is 2), whereas there is less excess rotational excitation (over
and above the initial, parent, excited state) when the initialj is
3. This simply says that whenj is greater than zero, a higher
fraction of the electronic energy is dumped into vibration which
is consistent with what we expect to happen when the collision
time becomes somewhat shorter (due to the centrifugal poten-
tial). We also find, as expected, less rotational excitation in
the ground state at an initial impact parameter of 10 bohr (not
shown).

IV. Concluding Remarks

We have demonstrated that the proposed quantum mechanical
approach is viable for a polyatomic system with nine degrees
of freedom. The test case we used was not a simple one. The
collision is “sticky” with many crossings of the region of
effective coupling (Figure 3), several electronic states are
coupled (Figure 2), quantum effects such as tunneling are
important, and we worked in the laboratory system of coordi-
nates which added three degrees of freedom to the problem.
Yet we encountered no difficulties in connection with the
multidimensional nature of the system. Partly this is because
of the inherent feature of the method that much of the
multidimensional character of the dynamics is carried out at
the classical level. In particular, the size of the quantum
mechanical basis set is not primarily determined by the number
of degrees of freedom. Instead, the basis set is tailored to the
problem using considerations of classical mechanics and
knowledge (which is developed as the simulation progresses)
of the nonadiabatic couplings. The computational efficiency
of the method is demonstrated by the fact that we are able to
compute a complete cross section for the quenching; see Figure
5.
The features of the Na*+ H2 collision are perhaps special

as compared to an atom-atom collision but are expected to be
typical for polyatomic molecules. Low-energy collisions of
polyatomic species are likely to be sticky so that the sporadic
exit of the wave packet (Figure 4), is expected to be the norm.
Note that this volleylike behavior is another manifestation of
the quantum localization of the wave function. A fully
delocalized state will have a finite, albeit small, amplitude
everywhere. The important role of the bending motion of the
exciplex (Figure 3 and further illustrated in Figure 6) may also
be general.
The proposed method works well because the region of

effective coupling is localized. There is no guarantee that this
will always be true, but very often it is. The use of a
nonstationary wave function means that describing the stationary

internal states of the colliding partners (here, the vibration and
rotation of H2) requires using a linear combination of nuclear
basis states to represent the initial state. On the other hand,
because we use a nonstationary wave function, describing a
pump-probe experiment, including the time dependence of the
excitation and detection stages is relatively simple and applica-
tions to Na*+ H2 will be the subject of a separate report.
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